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We wish to express our appreciation to Dr Jacek Kot and Dr 
Pawel Winklewski for their interest in our article.1  We agree 
in general terms with the assertion that our critical flicker 
fusion frequency (CFFF) evaluations cannot be confidently 
extrapolated to measurements made after larger time 
intervals at pressure. However, as they point out, a 5-minute 
acclimatisation is sufficient for the onset of the phenomenon 
we were attempting to measure (nitrogen narcosis), based not 
only on kinetic models but also on studies that have shown 
onset after a 5-minute latency.2,3  The remainder of their letter 
largely confirms our assertion that CFFF is confounded by 
so many other influences that it is likely incapable of reliably 
achieving our goal of isolating and measuring a short latency 
narcotic effect caused by hyperbaric nitrogen.

One such influence, emphasised by Kot and Winlewski, is the 
effect of elevated pressures of inspired oxygen, which can 
induce hyperexcitability. One point not noted in their letter 
is that hyperexcitability caused by oxygen has also been 
observed on arrival at elevated pressure.2,4  Nevertheless, 
we agree that oxygen toxicity effects typically have an onset 
latency beyond the measurement period used in our study, 
but oxygen toxicity is obviously a different syndrome, and 
its measurement was not our goal. Therefore, we agree that 
studies comparing substantially different oxygen exposures 
might record very different findings when using an outcome 
measurement (such as CFFF) potentially affected by the 
duration of exposure to hyperbaric oxygen. This almost 
certainly explains the differences between our study and 
that of Kot et al.5

We note Kot and Winlewski’s confident acceptance that 
oxygen is a narcotic gas and their invocation of the Meyer-
Overton hypothesis in comparing narcotic potentials of 
gases. The Meyer-Overton hypothesis is still widely cited 
within the diving medicine community to predict the narcotic 
potency of the various gases used in diving. Conversely, 
in the field of anaesthesiology, progress has been made 
in understanding how narcotic agents cause their effect 
by binding to ligand-gated ion-channel proteins.6 Related 

work has also helped explain why many gases, whose lipid 
solubility would predict a narcotic effect, have no such effect 
due to their incompatibility with receptor sites.7  It has been 
shown that dopamine changes are only one among many 
neurophysiological pathways disturbed by oxygen,8 both 
pre- and post-seizures. However, none of these pathways 
are similar to the pathways known to be implicated in the 
effect of narcotic agents. More recently, oxygen has been 
associated with the upregulating of the NMDA-receptor in a 
cellular model,9 while nitrous oxide and ketamine inhibit the 
NMDA receptor.10  This might explain the excitatory effect 
of hyperbaric oxygen. Hence, a narcotic effect of oxygen, 
preceding the hyperexcitability of oxygen seizures, seems 
very improbable.

In conclusion, we stand by our conclusion that research 
on CFFF as a measure of the narcotic effect exerted by 
hyperbaric gases has generated conflicting results, typically 
explained in each paper by invoking various confounding 
factors. We agree with Kot and Winlewski’s conclusion that 
CFFF is poorly suited to monitoring hyperbaric gas narcosis. 
It is too sensitive to confounding effects that may obfuscate 
the cognitive impairment caused by gas narcosis.
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